CHEMISTRY CLASS NOTES

(Aims 3)

AIM 3a: What are the SI units?

AIM 3b: What is significant figures? AIM 3c: What is scientific notation?

AIM 3d: What is dimensional analysis and how do we use it?

International System of Units (SI)

- standard system of measurements used in chemistry
- enable scientists to communicate with one another
- there are 7 base units
 - o all other units are derived from these 7 base units

7 SI base units

- ampere (A) measures electric current
- kilogram (kg) measure mass
- meter (m) measure length
- second (s) measure time
- kelvin (K) measure thermodynamic temperature
- mole (mol) measure amount of substance
- candela (cd) measure luminous intensity

SI prefixes (use to increase the size of the units)

			Exponential	Number
Prefix	Abbreviation	Meaning	Notation	
tera	Т	1 trillion	10^{12}	1,000,000,000,000
giga	G	1 billion	10 ⁹	1,000,000,000
mega	M	1 million	10^{6}	1,000,000
kilo	k	1 thousand	10^{3}	1,000
hecto	h	1 hundred	10^{2}	100
deka	da	1 ten	10	10
deci	d	1 tenth	10 ⁻¹	0.1
centi	С	1 hundredth	10-2	0.01
milli	m	1 thousandth	10-3	0.001
micro	μ	1 millionth	10 ⁻⁶	0.000001
nano	n	1 billionth	10-9	0.000000001
pico	p	1 trillionth	10 ⁻¹²	0.000000000001
femto	f	1 quadrillionth	10 ⁻¹⁵	0.0000000000000001

Significant Figures

- definition: a prescribed decimal place that determines the amount of rounding off to be done based on the precision of the measurement
- consist of all digits known with certainty and one uncertain digit.

Rules for determining significant figures

- nonzero digits are always significant
 - o example: 46.3 m has 3 significant figures
 - o example: 6.295 g has 4 significant figures
- Zeros between nonzero digits are significant
 - o example: 40.7 m has 3 significant figures
 - o example: 87,009 m has 5 significant figures
- Zeroes in front of nonzero digit are not significant
 - o example: 0.009587 m has 4 significant figures
 - o example: 0.0009 g has 1 significant figure
- Zeroes both at the end of a number and to the right of a decimal point are significant
 - o example: 85.00 g has 4 significant figures
 - o example: 9.0700 has 5 significant figures

Rules for using significant figures in calculation

- For multiplication and division
 - o The number of significant figure for the answer can not have more significant figures than the measurement with the smallest significant figures
 - Example: 12.257 x 1.162 = 14.2426234
 - 12.257 = 5 significant figures
 - 1.162 = 4 significant figures
 - Answer = 14.24 (4 significant figures)
- For addition and subtraction
 - o The number of significant figure for the answer can not have more significant number to the right of the decimal point
 - Example: 3.95 + 2.879 + 213.6 = 220.429
 - 3.95 = has 2 significant figures after the decimal points
 - 2.879 has 3 significant figures after the decimal points
 - 213.6 has 1 significant figures after the decimal points
 - Answer = 220.4 (1 significant figure)
- Remember the rounding rules
 - o Below 5 round down
 - o 5 or above roundup

Exact values

- has no uncertainty
 - o example: Count value number of items counted. There is no uncertainty
 - o example: conversion value relationship is defined. There is no uncertainty
- do not consider exact values when determining significant values in a calculated result

CALCULATOR does not account for significant figures!!!!

Scientific Notation

- Use to write very large number and very small number (more manageable)
- Parts:

Before the decimal point = 1 number

After the decimal points = more than 1 numbers (can be optional)

Exponential number = the number of places the decimal is moved

- Examples:

```
1,234,400 = 1.234400 \times 10^6 = 1.234400 E6

0.1234400 = 1.234400 \times 10^{-1} = 1.234400 E-1

0.0000123 = 1.23 \times 10^{-5} = 1.234400 E-5
```

Rules for Scientific Notation in calculation

- Exponents are count values
- For addition and subtraction, all values must have the same exponents before calculations
- For multiplication, the first factors of the numbers are multiplied and the exponents of 10 are added
- For division, the first factors of the numbers are divided and the exponent of 10 in the denominator is subtracted from the exponent of 10 in the numerator

Addition Example:

Problem: $6.2 \times 10^4 + 7.2 \times 10^3$

Step 1: $62 \times 10^3 + 7.2 \times 10^3$

Step 2: 69.2×10^3

Step 3: 6.92×10^4

Step 4: 6.9 x 10⁴ (Significant rule: can only have as many as the least significant figure to the right of the decimal)

Multiplication Example:

Problem: $(3.1 \times 10^3)(5.01 \times 10^4)$

Step 1: $(3.1 \times 5.01) \times 10^{4+3}$

Step 2: 16 x 10⁷

Step 3: 1.6 x 10⁸ (Significant rule: can only have as many as the least significant figure)

Division Example:

Problem: $(7.63 \times 10^3) / (8.6203 \times 10^4)$

Step 1: (7.63 / 8.6203) x 10³⁻⁴

Step 2: 0.885 x 10⁻¹

Step 3: 8.85 x 10⁻² (Significant rule: can only have as many as the least significant figure)

Dimensional Analysis

- Definition: Math system using conversion factors to move from one unit of measurement to a different unit of measurement.
- Why we use it: Make doing calculations easier when comparing measurements given in different units.
- Example: 1 day = how many seconds
 - Conversion factors
 - 1 day = 24 hours
 - 1 hour = 60 minutes
 - 1 minute = 60 seconds
 - o Dimensional Analysis
 - Setup

1 day	24 hours	60 minutes	60 seconds
	1 day	1 hour	1 minute

Remove the common units

1 day	24 hours	60 minutes	60 seconds	_ =	86,400 seconds
	1 day	1 hou	1 miny te	_	80,400 Seconds

Sources:

Meyers, R. Thomas, Oldham, Keith B., and Tocci, Salvatre (2005). HOLT CHEMISTRY: THE PHYSICAL SETTING. Orlando: Holt, Rinehart and Winston.

Hayden et la. PHYSICAL SETTING/CHEMISTRY CORE CURRICULUM. Retrieved from http://www.nysed.gov

Anonymous (2012). CK-12 CHEMISTRY. Retrieved from http://www.ck12.org

Anonymous~(2013):~CHEMISTRY.~Retrieved~from~http://www.boundless.com/chemistry/